

The big question—Is biodegradation occurring at the site?

Stable Isotope Probing (SIP) is an innovative method to track the environmental fate of a " 13 C-labeled" contaminant of concern to unambiguously demonstrate biodegradation. The label serves as a tracer which can be detected in the end products of biodegradation (new biomass and CO_2 or dissolved inorganic carbon).

SIP Applications

- Assessing monitored natural attenuation (MNA)—Incorporation of the ¹³C label into biomass and dissolved inorganic carbon (DIC) conclusively demonstrates that biodegradation of the contaminant is occurring in situ.
- Evaluating enhanced bioremediation Greater levels of ¹³C incorporation into biomass and DIC relative to a control demonstrate that the addition of the amendment (electron acceptor, nutrients, etc.) promoted biodegradation.

How does SIP work?

• Bio-Traps® are "baited" with a specially synthesized form of the contaminant containing "heavy" carbon (13 C) as the label.

- SIP studies can be performed for any compound that microbes use as a carbon source. Some of the more common include:
 - · Benzene
 - · MTBE (methyl tert-butyl ether)
 - · TBA (tert-butyl alcohol)
 - · Chlorobenzene

- · Toluene
- · Xylenes
- Naphthalene

- Since ^{13}C is rare, carbon originating from the labeled contaminant is readily distinguished from carbon (predominantly ^{12}C) from other sources.
- Bio-Traps® are deployed in a monitoring well and the ¹³C labeled contaminant is subject to the same physical, chemical, and microbiological processes as the site contaminants.
- Following in-well deployment, the Bio-Traps® are recovered and two methods are used to document in situ biodearadation of the contaminant.

Phospholipid Fatty Acids (PLFA) — PLFA are a major component in the membranes of all microbes, thus, incorporation of the ¹³C label into PLFA unequivocally shows incorporation of the contaminant into biomass.

Dissolved Inorganic Carbon (DIC)—Enrichment of ¹³C labeled DIC (CO₂ and carbonates) demonstrates contaminant mineralization.

Example Stable Isotope Probing (SIP) Results

Probably the most common application of the SIP method is demonstrating that biodegradation of a particular contaminant is occurring in situ under monitored natural attenuation (MNA) conditions. In this example, Bio-Trap A and Bio-Trap B were baited with ¹³C labeled benzene and deployed in existing monitoring wells representing different zones of the dissolved plume

Question: Is benzene biodegradation occuring?

Sample Name	Bio-Trap A	Bio-Trap B
¹³ C Contamimant Loss		
Benzene Pre-deployment (mg/bd)	1.2	1.2
Benzene Post-deployment (mg/bd)	0.9	0.6
% Loss	24%	50%
Biomass & ¹³ C Incorporation		
Total Biomass (Cells/bd)	3.53E+04	1.15E+05
¹³ C Enriched Biomass (Cells/bd)	6.58E+01	3.30E+03
% ¹³ C Incorporation	0.19%	2.87%
Average PLFA Del (%)	76	1,710 —
Maximum PLFA Del (%)	122	3,018
¹³ C Mineralization		
DIC Del (%)	-12	506
% 13 C	1.09	1.66

¹³C Benzene Remaining 1.200 (pq/gm) 1.025 0.850 0.675 0.500 Bio-Trap B Pre-Deployment Bio-Trap A

Comparison of Pre- and Post- Deployment 13C benzene concentrations are used to document loss of the contaminant.

400

Bio-Trap A

Bio-Trap B

¹³C Utilized for CO ₂

600

Similarly, incorporation of ¹³C into DIC was moderate in Bio-Trap B while only minor mineralization was observed in Bio-Trap A.

Average Background

Although ¹³C incorporation into biomass demonstrated that benzene biodegradation was occurring at both locations, contaminant incorporation into biomass was substantially greater in Bio-Trap B which was consistent with a greater decrease in benzene concentration.

Conclusions

 Results of the SIP study conclusively demonstrates that benzene biodegradion is occurina.

What is a Del (‰) Value? The del value represents the isotopic ratio $(^{13}C/^{12}C)$ of the sample compared to a standard. When biodegradation of the ¹³C labeled contaminant is occurring, the ¹³C/¹²C ratio and thus the del value of the PLFA biomass and DIC will increase above back ground values.

ERR www.erraus.com.au Unit 59/148 Chesterville Road Moorabbin Vic 3189 Australia Phone: +61 3 9555 3800